Hello Arturo, I loved your article, and I agree, there is a lot more to space colonization than rockets. I was researching NASA’s two training stations (by the way, if anyone has a Masters in STEM, you can apply to live on one of the practice stations) https://www.popularmechanics.com/space/moon-mars/a37349989/nasa-mars-colony-simulation/ and I think the main solutions to the problem of an isolated community on Mars would be:
1. 3d printing/CNC cutting with multiple materials 2. hydroponic systems using GMO plants and fish 3. automated construction systems with local materials where possible.
I wonder if concrete is possible with Mars rock, or what kinds of minerals we’ll be able to take advantage of. If the value of Mars material outweighs the cost of sending ships back and forth, it won’t really be a closed system anymore.
And if people live on the moon, or in low-orbit stations, as well as Earth, there will be new markets for trade and manufacturing.
If you take a peak at some of my links to NASA’s website, they do list a number of phenomenal projects on material science, energy capture/creation, plus terraforming tech. Still, without a feasible fuel source, it’s hard to imagine actually making it to Mars let alone outside our solar system one day.
That being said, what have you heard about fusion propulsion and what are your thoughts?
If fussion propulsion is possible, probably fussion would be available for energy production on Earth, and that would imply “energy too cheap to measure”. The kind of economy under that regime would extremely different from ours. Under that conditions, for example, materials would be extremely easy to obtain from Earth (we could profitably mine minerals with far lower ore grades than we can now).
I think that if we ever reach the “energy too cheap to measure” economic regime, for example, extiction risk would be far lower than now. But we all know that Brazil is the country of the future, and allways will be, and that nuclear fussion will allways be 30 years in the future either… I hope I am wrong in both :-)
In a previous post I commented that before we deal with spaceships, we need a complete circular and almost self replicating human economy:
https://progressforum.org/posts/62XwqubkcAKNG6Wqf/space-colonization-and-the-closed-material-economy
This is the hardest problem
Hello Arturo, I loved your article, and I agree, there is a lot more to space colonization than rockets. I was researching NASA’s two training stations (by the way, if anyone has a Masters in STEM, you can apply to live on one of the practice stations) https://www.popularmechanics.com/space/moon-mars/a37349989/nasa-mars-colony-simulation/ and I think the main solutions to the problem of an isolated community on Mars would be:
1. 3d printing/CNC cutting with multiple materials
2. hydroponic systems using GMO plants and fish
3. automated construction systems with local materials where possible.
I wonder if concrete is possible with Mars rock, or what kinds of minerals we’ll be able to take advantage of. If the value of Mars material outweighs the cost of sending ships back and forth, it won’t really be a closed system anymore.
And if people live on the moon, or in low-orbit stations, as well as Earth, there will be new markets for trade and manufacturing.
If you take a peak at some of my links to NASA’s website, they do list a number of phenomenal projects on material science, energy capture/creation, plus terraforming tech. Still, without a feasible fuel source, it’s hard to imagine actually making it to Mars let alone outside our solar system one day.
That being said, what have you heard about fusion propulsion and what are your thoughts?
If fussion propulsion is possible, probably fussion would be available for energy production on Earth, and that would imply “energy too cheap to measure”. The kind of economy under that regime would extremely different from ours. Under that conditions, for example, materials would be extremely easy to obtain from Earth (we could profitably mine minerals with far lower ore grades than we can now).
I think that if we ever reach the “energy too cheap to measure” economic regime, for example, extiction risk would be far lower than now. But we all know that Brazil is the country of the future, and allways will be, and that nuclear fussion will allways be 30 years in the future either… I hope I am wrong in both :-)