The Industrial Revolution was caused by an acceleration of innovation. But how was that acceleration caused? Most theories of the acceleration’s causes assume that innovation is in human nature, that it has always been around.
So, they might argue:
Property rights became better enforced so budding innovators felt more secure to make themselves known.
Patents appeared so innovators could reveal their secrets and still profit from them.
Brits were particularly skilled or well-educated so innovators could more easily get their innovations implemented.
British society started to accord dignity or honour to innovation so innovators felt motivated to have a go.
Demand increased so innovators had a big enough market to begin selling their innovations.
And so on.. All of these arguments assume the same thing — that innovation is a part of human nature, a choice that has always been recognised. Their implicit claim is that, other than in mid-eighteenth century Britain, save for a few short-lived cases, choosing innovation was simply just not worth it.
I disagree.
The more I study the lives of British innovators, the more convinced I am that innovation is not in human nature, but is instead received. People innovate because they are inspired to do so — it is an idea that is transmitted. And when people do not innovate, it is often simply because it never occurs to them to do so. Incentives matter too, of course. But a person needs to at least have the idea of innovation — an improving mentality — before they can choose to innovate, before they can even take the costs and benefits of innovation into account.
An illustration: at a conference I was at last month the attendees wore lanyards with name tags, which listed their names on one side. Over the course of the conference the tags would inevitably flip over, hiding the names. People would, when introducing themselves, periodically check each other’s tags, flipping them the right way around. But only one person — one single person, of attendees in the hundreds, had the ingenuity to write their name on the other side. To my shame, it wasn’t me.
Everyone at that conference had an incentive to do that innovation. Everyone was there to meet one another, so the innovation helped achieve that goal. And the cost of the innovation was negligible. It took a couple of seconds to whip out a pen and scribble a name. It simply did not occur to them to innovate. Innovation can be extraordinarily rare — despite the opportunities, despite the incentives.
And I find the same old story during the British Industrial Revolution. My favourite example is John Kay’s flying shuttle. It was an improvement to the loom, which radically increased the productivity of weaving, and which finds a place in every textbook. A shuttle is the thing that weavers pass from side to side, drawing a thread, the weft, under and over the threads facing away from them, called the warp. Weavers would lift every other warp thread and pass the shuttle from hand to hand, hence passing the weft under the warp threads that were lifted, and over the ones that were not lifted. Under and over, under and over.
Kay’s innovation was to use two wooden boxes on either side to catch the shuttle. And he attached a string, with a little handle called a picker, so that the shuttle could be jerked across the loom, at great speed. Here’s a video of it in action.
Kay’s innovation was extraordinary in its simplicity. As the inventor Bennet Woodcroft put it, weaving with an ordinary shuttle had been “performed for upwards of five thousand years, by millions of skilled workmen, without any improvement being made to expedite the operation, until the year 1733”. All Kay added was some wood and some string. And he applied it to weaving wool, which had been England’s main industry since the middle ages. He had no special skill, he required no special understanding of science for it, and he faced no special incentive to do it. As for institutions, the flying shuttle was technically illegal because it saved labour, the patent was immediately pirated by competitors to little avail, and Kay was forced to move to France, hounded out of the country by angry weavers who threatened his property and even his life. Kay faced no special incentives — he even innovated despite some formidable social and legal barriers.
Kay’s flying shuttle is just one example, but it is illustrative of many more innovations that were low-hanging fruit, ripe for the plucking for centuries. So the usual, natural state is the state of those millions of weavers who preceded Kay, who never knew another innovator and so never even received the idea of innovating. As the agricultural innovator Arthur Young put it, the natural state is not innovation, but “that dronish, sleepy, and stupid indifference, that lazy negligence, which enchains men in the exact paths of their forefathers, without enquiry, without thought”.
Is Innovation in Human Nature?
Link post
The Industrial Revolution was caused by an acceleration of innovation. But how was that acceleration caused? Most theories of the acceleration’s causes assume that innovation is in human nature, that it has always been around.
So, they might argue:
Property rights became better enforced so budding innovators felt more secure to make themselves known.
Patents appeared so innovators could reveal their secrets and still profit from them.
Brits were particularly skilled or well-educated so innovators could more easily get their innovations implemented.
British society started to accord dignity or honour to innovation so innovators felt motivated to have a go.
Demand increased so innovators had a big enough market to begin selling their innovations.
And so on.. All of these arguments assume the same thing — that innovation is a part of human nature, a choice that has always been recognised. Their implicit claim is that, other than in mid-eighteenth century Britain, save for a few short-lived cases, choosing innovation was simply just not worth it.
I disagree.
The more I study the lives of British innovators, the more convinced I am that innovation is not in human nature, but is instead received. People innovate because they are inspired to do so — it is an idea that is transmitted. And when people do not innovate, it is often simply because it never occurs to them to do so. Incentives matter too, of course. But a person needs to at least have the idea of innovation — an improving mentality — before they can choose to innovate, before they can even take the costs and benefits of innovation into account.
An illustration: at a conference I was at last month the attendees wore lanyards with name tags, which listed their names on one side. Over the course of the conference the tags would inevitably flip over, hiding the names. People would, when introducing themselves, periodically check each other’s tags, flipping them the right way around. But only one person — one single person, of attendees in the hundreds, had the ingenuity to write their name on the other side. To my shame, it wasn’t me.
Everyone at that conference had an incentive to do that innovation. Everyone was there to meet one another, so the innovation helped achieve that goal. And the cost of the innovation was negligible. It took a couple of seconds to whip out a pen and scribble a name. It simply did not occur to them to innovate. Innovation can be extraordinarily rare — despite the opportunities, despite the incentives.
And I find the same old story during the British Industrial Revolution. My favourite example is John Kay’s flying shuttle. It was an improvement to the loom, which radically increased the productivity of weaving, and which finds a place in every textbook. A shuttle is the thing that weavers pass from side to side, drawing a thread, the weft, under and over the threads facing away from them, called the warp. Weavers would lift every other warp thread and pass the shuttle from hand to hand, hence passing the weft under the warp threads that were lifted, and over the ones that were not lifted. Under and over, under and over.
Kay’s innovation was to use two wooden boxes on either side to catch the shuttle. And he attached a string, with a little handle called a picker, so that the shuttle could be jerked across the loom, at great speed. Here’s a video of it in action.
Kay’s innovation was extraordinary in its simplicity. As the inventor Bennet Woodcroft put it, weaving with an ordinary shuttle had been “performed for upwards of five thousand years, by millions of skilled workmen, without any improvement being made to expedite the operation, until the year 1733”. All Kay added was some wood and some string. And he applied it to weaving wool, which had been England’s main industry since the middle ages. He had no special skill, he required no special understanding of science for it, and he faced no special incentive to do it. As for institutions, the flying shuttle was technically illegal because it saved labour, the patent was immediately pirated by competitors to little avail, and Kay was forced to move to France, hounded out of the country by angry weavers who threatened his property and even his life. Kay faced no special incentives — he even innovated despite some formidable social and legal barriers.
Kay’s flying shuttle is just one example, but it is illustrative of many more innovations that were low-hanging fruit, ripe for the plucking for centuries. So the usual, natural state is the state of those millions of weavers who preceded Kay, who never knew another innovator and so never even received the idea of innovating. As the agricultural innovator Arthur Young put it, the natural state is not innovation, but “that dronish, sleepy, and stupid indifference, that lazy negligence, which enchains men in the exact paths of their forefathers, without enquiry, without thought”.